GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

نویسندگان

  • Myungje Choi
  • Jhoon Kim
  • Jaehwa Lee
  • Mijin Kim
  • Young-Je Park
  • Ukkyo Jeong
  • Woogyung Kim
  • Hyunkee Hong
  • Brent Holben
  • Thomas F. Eck
  • Chul H. Song
  • Jae-Hyun Lim
  • Chang-Keun Song
چکیده

The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks – Northeast Asia 2012 campaign (DRAGONNE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Ångström exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox–Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083×AERONET AOD− 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive comment on “GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during DRAGON-NE Asia 2012 campaign” by M. Choi et al

This paper presents an improvement of Yonsei Aerosol Retrieval (YAER) algorithm dedicated to the processing of the Geostationnary Ocean Color Imager (GOCI) satellite data and its validation through the DRAGON-NE Asia campaign that took place in spring 2012. The second section of the paper is dedicated to the presentation of the GOCI YAER algorithm and its improvements. The cloud masking is perf...

متن کامل

New approach to monitor transboundary particulate pollution over Northeast Asia

A new approach to more accurately monitor and evaluate transboundary particulate matter (PM) pollution is introduced based on aerosol optical products from Korea’s Geostationary Ocean Color Imager (GOCI). The area studied is Northeast Asia (including eastern parts of China, the Korean peninsula and Japan), where GOCI has been monitoring since June 2010. The hourly multi-spectral aerosol optical...

متن کامل

Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing

A new aerosol retrieval algorithm using multiangular total and polarized measurements is presented. The algorithm retrieves aerosol optical depth (AOD), fine-mode fraction (FMF) for studying the impact of aerosol on climate change. The retrieval algorithm is based on a lookup table (LUT) method, which assumes that one fine and one coarse lognormal aerosol modes can be combined with proper weigh...

متن کامل

Retrieving XCO2 from GOSAT FTS over East Asia Using Simultaneous Aerosol Information from CAI

In East Asia, where aerosol concentrations are persistently high throughout the year, most satellite CO2 retrieval algorithms screen out many measurements during quality control in order to reduce retrieval errors. To reduce the retrieval errors associated with aerosols, we have modified YCAR (Yonsei Carbon Retrieval) algorithm to YCAR-CAI to retrieve XCO2 from GOSAT FTS measurements using aero...

متن کامل

Estimation of PM10 concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign

The performance of various empirical linear models to estimate the concentrations of surface-level particulate matter with a diameter less than 10 μm (PM10) was evaluated using Aerosol Robotic Network (AERONET) sun photometer and Moderate-Resolution Imaging Spectroradiometer (MODIS) data collected in Seoul during the Distributed Regional Aerosol Gridded Observation Network (DRAGON)-Asia campaig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016